前言
有機(jī)太陽(yáng)能電池(OSCs)因其輕便、柔性、可大面積制備等優(yōu)勢(shì),近年來(lái)備受關(guān)注。為了提升OSCs的效率,研究人員不斷開(kāi)發(fā)新型有機(jī)光伏受體材料,特別是基于受體-供體-受體(A-D-A)結(jié)構(gòu)的小分子受體(SMAs)。然而,目前高效率的OSCs器件通常依賴于含鹵素溶劑,這不利于其大規(guī)模商業(yè)化應(yīng)用。因此,開(kāi)發(fā)與無(wú)鹵素溶劑兼容的高效有機(jī)光伏材料至關(guān)重要。
深圳大學(xué)楊楚羅團(tuán)隊(duì)八月于Advanced Materials (DOI: 10.1002/adma.202407517) 中發(fā)表的研究成果,提出了一種基于苯并[a]吩嗪 (BP) 核心的新型SMA,并通過(guò)異構(gòu)化氯化策略,設(shè)計(jì)了一系列SMA,包括未氯化的NA1、10位氯取代的NA2、8位氯取代的NA3和7位氯取代的NA4。重要的是,在PM6二元混合物中加入D18-Cl,可以增強(qiáng)晶體學(xué)有序性和增加供體相的激子擴(kuò)散長(zhǎng)度,從而使三元器件的效率達(dá)到19.75%(認(rèn)證為19.39%)。這些發(fā)現(xiàn)強(qiáng)調(diào)了在高效SMAs的設(shè)計(jì)中,融入新的電子缺陷單位對(duì)于實(shí)現(xiàn)環(huán)境友好型溶劑加工有機(jī)太陽(yáng)能電池的重要性。
導(dǎo)讀目錄
1. 前言
2. 研究目的
3. 研究方法
4. 器件與表征
5. 結(jié)論
研究目的
研究的目的在于開(kāi)發(fā)與無(wú)鹵溶劑兼容的高效有機(jī)光伏材料,以克服當(dāng)前高性能有機(jī)太陽(yáng)能電池對(duì)含鹵溶劑的依賴。通過(guò)設(shè)計(jì)和合成一系列基于苯并[a]菲嗪(BP)核心的小分子受體(SMAs),研究人員旨在實(shí)現(xiàn)高效的能量轉(zhuǎn)換效率(PCE),尤其是在使用正交二甲苯(o-XY)作為加工溶劑時(shí)。此外,研究還探索了氯原子取代位置對(duì)分子溶解性和結(jié)晶/聚集行為的影響,以及如何通過(guò)在二元混合物中加入D18-Cl來(lái)進(jìn)一步提高器件的效率。
研究方法
本研究旨在設(shè)計(jì)、探究基于苯并[a]菲嗪 (BP) 為核心的新型小分子受體 (SMAs) 的分子結(jié)構(gòu),并評(píng)估其在有機(jī)太陽(yáng)能電池中的應(yīng)用,主要研究方法如下:
1. 材料設(shè)計(jì)與合成
研究團(tuán)隊(duì)設(shè)計(jì)了一系列以苯并[a]菲嗪(BP)為核心的三維網(wǎng)絡(luò)受體材料,小分子受體(SMAs),并通過(guò)異構(gòu)化氯化策略合成了四種目標(biāo)材料,分別為NA1、NA2、NA3和NA4。
(a) 二面角:顯示了NA1、NA2、NA3和NA4的N–C–C–N二面角,分別為8.9°、9.0°、9.1°和9.0°,表明這些分子的平面性。
(b) 最佳二聚體結(jié)構(gòu):展示了這些分子的最佳二聚體結(jié)構(gòu),包括π?ππ?π堆積距離和LUMO軌道重疊長(zhǎng)度。所有分子的能量差(ΔE)為0 eV,顯示出穩(wěn)定的堆積結(jié)構(gòu)。NA3的IC/BP相互作用距離為13.84 ?,顯示出良好的分子堆積。
(c) 單晶堆積模式:展示了NA3的三維網(wǎng)絡(luò)結(jié)構(gòu)和不同二聚體的堆積模式。特別是,Dimer IV的IC/IC相互作用顯示出104.3 meV的電子耦合,表明其優(yōu)異的電子傳輸能力。
2. 理論模擬
使用密度泛函理論(DFT)計(jì)算來(lái)模擬分子的單分子幾何和局部偶極矩,以了解分子的平面性和分子間的相互作用,并計(jì)算電子耦合和進(jìn)行分子軌道分析。
3. 其他測(cè)試
l 循環(huán)伏安法(CV):用于測(cè)定材料的氧化還原電位,進(jìn)而確定分子的能級(jí)和氧化還原特性。
l 空間電荷限制電流(SCLC)方法:用于測(cè)量薄膜的載流子遷移率。
l 瞬態(tài)吸收光譜學(xué)(TAS):用于研究激子動(dòng)態(tài),分析激子的擴(kuò)散和解離行為。
器件與表征
本研究通過(guò)多種表征手段,深入探究了基于苯并[a]菲嗪 (BP) 為核心的新型小分子受體 (SMAs) 的分子結(jié)構(gòu)、光電性質(zhì)、薄膜形態(tài)以及器件性能,主要成果如下:
1. 器件性能
l J-V曲線測(cè)量: 研究團(tuán)隊(duì)使用 Keysight B2901A Source Meter 在恒溫箱中,模擬 AM 1.5G(100 mW cm^-2)標(biāo)準(zhǔn)光照條件下,使用 Enlitech 太陽(yáng)模擬器測(cè)量器件的 J-V 曲線。通過(guò)分析 J-V 曲線,可以獲得器件的開(kāi)路電壓(Voc)、短路電流密度(Jsc)、填充因子(FF)和能量轉(zhuǎn)換效率(PCE)等關(guān)鍵參數(shù),并比較不同材料組合的性能差異。
l 外量子效率(EQE)測(cè)量: 研究團(tuán)隊(duì)使用Enlitech公司生產(chǎn)的 Solar Cell Spectral Response Measurement System QE-R3011 進(jìn)行 EQE 測(cè)量,以獲取太陽(yáng)能電池在 300-900 nm 波長(zhǎng)范圍內(nèi)的光電轉(zhuǎn)換效率信息。通過(guò) EQE 測(cè)量,可以計(jì)算出每個(gè)波長(zhǎng)的光電轉(zhuǎn)換效率,并與標(biāo)準(zhǔn)單晶硅光伏電池進(jìn)行校準(zhǔn),進(jìn)一步理解器件對(duì)不同波長(zhǎng)光子的響應(yīng)能力,以及激子的產(chǎn)生和收集效率。此外,通過(guò)光電流密度與 EQE 曲線的積分,可以驗(yàn)證 Jsc 的準(zhǔn)確性。
(a) J-V曲線:顯示了不同材料組合(PM6、PM6、PM6、PM6)的電流密度與電壓關(guān)系。PM6表現(xiàn)出最佳性能。
(b) EQE曲線:展示了這些材料在不同波長(zhǎng)下的外量子效率。PM6在大多數(shù)波長(zhǎng)下的EQE最高。
(c) JphJph vs VeffVeff:顯示了光生電流密度與有效電壓的關(guān)系,PM6的曲線表明其更高的光電轉(zhuǎn)換效率。
(d) J-V曲線(PM6:D18-Cl vs PM6):比較了加入D18-Cl后的器件性能,顯示出效率的提升。插圖中顯示了認(rèn)證的PCE為19.39%。
(e) EQE曲線(PM6:D18-Cl vs PM6):顯示了加入D18-Cl后的EQE變化,表明光電轉(zhuǎn)換性能的提升。
(f) PCE vs VOC×JSCVOC×JSC:比較了本研究與先前報(bào)告的器件效率,顯示出本研究的器件在效率上有顯著提升。
Figure S7顯示了PM6、PM6、PM6、PM6和PM6:D18-Cl混合物的J-V特性在黑暗中的特征。這張圖表用于評(píng)估太陽(yáng)能電池中的電荷傳輸和收集效率,特別是在沒(méi)有光照的情況下。通過(guò)分析這些曲線,可以了解器件中的空間電荷限制電流(SCLC)行為,并計(jì)算出電荷遷移率。
2. 分子結(jié)構(gòu)與性質(zhì)
l 核磁共振(NMR): 用于鑒定化合物的化學(xué)結(jié)構(gòu),包括1H NMR和13C NMR,確認(rèn)了目標(biāo)分子的成功合成。
l 質(zhì)譜(MS): 用于測(cè)定化合物的分子量和純度,驗(yàn)證了合成物質(zhì)的準(zhǔn)確性。
l 理論模擬: 使用密度泛函理論(DFT)計(jì)算來(lái)模擬分子的單分子幾何和局部偶極矩,以了解分子的平面性和分子間的相互作用,并計(jì)算電子耦合和進(jìn)行分子軌道分析。
l 單晶X射線衍射(XRD): 通過(guò)單晶X射線衍射實(shí)驗(yàn)來(lái)研究分子的晶體結(jié)構(gòu)和分子間的堆積行為,揭示了分子排列和晶體堆積方式。
l 電化學(xué)測(cè)試: 進(jìn)行循環(huán)伏安法(CV)測(cè)試來(lái)確定材料的氧化還原電位,進(jìn)而確定分子的能級(jí)和氧化還原特性。
l 紫外-可見(jiàn)吸收光譜: 測(cè)量薄膜和溶液的吸收光譜,以了解分子的光吸收特性,分析其光譜吸收范圍和強(qiáng)度。
3. 薄膜形態(tài)與特性
l 二維掠入射廣角X射線散射(GIWAXS): 使用GIWAXS技術(shù)來(lái)分析薄膜的分子堆積和聚集特征,探究薄膜的結(jié)晶度和取向。
l 原子力顯微鏡(AFM): 用于分析薄膜的表面形態(tài),觀察表面粗糙度和相分離情況。
l 透射電子顯微鏡(TEM): 用于觀察薄膜的體態(tài)結(jié)構(gòu),研究薄膜內(nèi)部的微觀形貌和相分布。
l 空間電荷限制電流(SCLC)方法: 使用SCLC方法來(lái)測(cè)量薄膜的載流子遷移率,評(píng)估電荷傳輸性能。
4. 瞬態(tài)吸收光譜學(xué)(TAS): 用于研究激子動(dòng)態(tài),分析激子的擴(kuò)散和解離行為,了解激子在材料中的傳輸和分離過(guò)程。
結(jié)論
1. 新型小分子受體的設(shè)計(jì)與合成:研究團(tuán)隊(duì)設(shè)計(jì)并合成了一系列以苯并[a]菲嗪為核心的小分子受體,這些材料在結(jié)構(gòu)上具有創(chuàng)新性,特別是在氯原子的精確定位方面。
2. 高效率OSCs的實(shí)現(xiàn):通過(guò)使用這些新設(shè)計(jì)的受體材料,研究人員在使用正交二甲苯作為加工溶劑時(shí),實(shí)現(xiàn)了接近20%的能量轉(zhuǎn)換效率,這是該領(lǐng)域的一個(gè)重要進(jìn)步。
3. 環(huán)境友好型溶劑處理的示范:研究證明了使用非鹵素溶劑(如正交二甲苯)來(lái)制備高效率OSCs的可行性,這對(duì)于推動(dòng)OSCs的大規(guī)模商業(yè)化和環(huán)境友好型生產(chǎn)具有重要意義。
4. 深入的結(jié)構(gòu)-性能關(guān)系分析:研究通過(guò)理論模擬和實(shí)驗(yàn)手段,詳細(xì)分析了分子結(jié)構(gòu)、薄膜形態(tài)和器件性能之間的關(guān)系,為未來(lái)材料設(shè)計(jì)提供了重要的參考。
5. 高效能器件的制備方法:通過(guò)在PM6二元混合物中加入D18-Cl,進(jìn)一步提升了器件的效率,這提供了一種優(yōu)化OSCs性能的新策略。
這些新知識(shí)為有機(jī)太陽(yáng)能電池領(lǐng)域的進(jìn)一步研究和應(yīng)用奠定了基礎(chǔ),并為解決當(dāng)前OSCs行業(yè)面臨的挑戰(zhàn)提供了新的解決方案。
文獻(xiàn)參考自Advanced Materials_DOI:10.1002/adma.202407517
本文章為Enlitech光焱科技改寫(xiě) 用于科研學(xué)術(shù)分享 如有任何侵權(quán) 請(qǐng)來(lái)信告知